Simulation of Edge-Plasma Modification from Large Lithium Influx at the DiMES Location*

T.D. Rognlien, G.D. Porter, & M.E. Rensink

Lawrence Livermore National Lab

ALPS Electronic Meeting May 4, 2001

^{*} Work performed by University of California Lawrence Livermore National Laboratory for USDoE under contract No. W-7405-ENG-48.

Goal, Method, and Summary

Goal: Simulate collapse of edge plasma in DIII-D shot 105511 from large lithium influx to benchmark full SOL impurity transport models

Method: Time-dependent UEDGE transport code with toroidally symmetric lithium gas injection

Justification: Although DiMES is localized toroidally, parallel flow will help establish toroidal symmetry in a time $2\pi R$ / Cs ~ 10^{-4} sec; various uncertainties, but plasma detached state can help

Main results:

- 1) Large lithium evaporative flux from the divertor can lead to divertor and core thermal collapse
- 2) Lithium enters the core through the X-point
- 3) Very high DiMES temperatures (~1100 K) are required to give needed Li flux (see Whyte)

Lithium point-injection on outer plate depresses T_e locally

Li injected at one mesh point to model DiMES probe Core power is 0.8 MW, C rad. = 0.19 MW, Li rad. = 0.14 MW

Assumed Li source of 5x10²¹/s from DiMES probe location yields a steady-state plasma

- Calculation uses toroidal symmetry

- If localized to actual DiMES area, flux of 10²⁵/m²s implies a surface temperature of 1050 K

- Hydrogen sputtering coeff. of Li would need to be ~10³

Lithium radiation loss near DiMES location causes T_e collapse at the outer plate

- Heat flux to the outer plate substantially reduced
- Lower heat flux should reduce DiMES heating, but time-history can be important
- Neutral lithium can escape from the near-plate region

Temporal evolution shows lithium influx through x-point for source of 2.5x10²²/s

Plans & questions for DiMES modeling

- Closer comparison with data (Te, radiation)
- Understand difference with CDX-U drops core ablation versus periphery gas influx?
- Influence of ExB drifts

- Cause of overheating or ablation of injected blob